Prime geodesic theorem and closed geodesics for large genus
报告人: 吴云辉(清华大学)
时间:2024-12-02 14:00-15:00
地点:智华楼王选报告厅-101
Abstract:
In this work, we study the Prime Geodesic Theorem for random hyperbolic surfaces. As an application, we show that as the genus g goes to infinity, on a generic hyperbolic surface in the moduli space of Riemann surfaces of genus g, most closed geodesics of length significantly less than $\sqrt{g}$ are simple and non-separating, and most closed geodesics of length significantly greater than $\sqrt{g}$ are non-simple, confirming a conjecture of Lipnowski-Wright. This is a joint work with Yuhao Xue.
About the Speaker:
吴云辉,清华大学数学科学系/丘成桐数学科学中心长聘教授,国家级人才项目入选者。2012年博士毕业于美国布朗大学,2012-2016年担任美国莱斯大学Evans讲师,2016年至今任职于清华大学。吴云辉在Teichmüller理论及其相关的复分析与几何、拓扑等研究领域取得了一系列重要成果,相关工作发表在Invent. Math, Geom. Funct. Anal, J. Eur. Math. Soc, J. Differential Geom, Amer. J. Math, Crelle’s Journal等国际知名数学期刊上。
Your participation is warmly welcomed!
欢迎扫码关注北大统计科学中心公众号,了解更多讲座信息!