In this talk, we give a detailed discuss on the original intuition, popular applications, and recent advances on anytime-valid inference. Particularly, we will focus on its usage in hypothesis testing of parametric examples, construction of confidence sequences for sample means, and modification to adapt to asymptotic theory. We will finally introduce an application to parameter inference in stochastic approximation.While these methods circumvented the intractability of the posterior distribution and have led to success in applications, they don't guarantee exact recovery of posterior distribution theoretically. In this talk, we will first briefly introduce some of the basic algorithms solving inverse problem with diffusion model. Then, we will focus on methods based on Sequential Monto Carlo (SMC) that aims to sample from the true posterior distribution, approximated by a weighted interacting particle system. Additionally, we share some thoughts on extension of these methods and their connection with other fields." />
TOP