Thus a necessary and sufficient condition for no-arbitrage (respectively, for completeness) is the existence of the increasing (respectively, the uniqueness of the) invariant, which, therefore, fulfills in nonlinear DeFi theory a foundational role parallel to the existence (respectively, uniqueness) of the pricing measure in the Fundamental Theorem of Asset Pricing for linear markets. Moreover, a market system is recoverable by its invariant if and only if it is complete.

Our examples illustrate (non)existence of various specific types of arbitrage in the context of various specific types of market systems -- with or without fees, with or without liquidity operations, and with or without coordination among multiple pools -- but the fundamental theorems have full generality, applicable to any DeFi market system and to any notion of arbitrage expressible as a strict partial order. " />
TOP