学术讲座

首页 » 学术讲座 »  Estimating Heterogeneous Caus...
Title(题目) Estimating Heterogeneous Causal effects: A Bayesian Nonparametric Approach

Speaker(报告人):Prof. Xinyi Xu,Ohio State University

Time(时间):2017-12-27(星期三) 10:30-11:30

Place(地点):理科一号楼1418

Abstract(摘要):Inferring a causal relationship is an important task in both social science and health research. In an observational study, unlike a randomized experiment, treatment assignment is likely to be confounded with many factors. Under the potential outcome framework, propensity score based matching, stratification, and weighting approaches are commonly used to estimate the average treatment effect. The propensity score aids the inference substantially as a dimension reduction tool under the ignorable treatment assignment assumption. We propose a nonparametric Bayesian approach to estimating the potential outcome response surfaces, which is both less model dependent and natural to incorporate heterogeneous treatment effects from the posterior distribution. Also, we show the popular propensity score matching estimator is a special case for our approach as a limit of prior distributions. A sensitivity analysis strategy is proposed to assess the impact due to potential unmeasured confounders. We apply our method to investigate the impact of college attendance on women fertility, which is known to suffer from the potential heterogeneous effects.

About the speaker(报告人介绍):Xinyi Xu is an Associate Professor at Ohio State University. She obtained her BS degree from USTC in 2001, and obtained her Ph.D. degree from University of Pennsylvania in 2005. Her main research areas are Bayesian hierarchical modeling, model selection and model averaging, nonparametric Bayes, decision theory, and the applications of statistical methods in biostatistics, marketing, finance, etc.


北京大学统计科学中心